The t(11;20)(p15;q11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOP1 fusion.
نویسندگان
چکیده
The NUP98 gene is involved in 3 distinct chromosomal rearrangements, t(7;11)(p15;p15), t(2;11)(q31;p15), and inv(11)(p15q22); all of these NUP98 rearrangements have been identified in the malignant cells of patients with therapy-related acute myelogenous leukemia or myelodysplastic syndrome (t-AML/MDS). Here we report the cloning and characterization of a t(11;20)(p15;q11) translocation from patients with t-MDS. The breakpoint on chromosome 11p15 targets the NUP98 gene and results in the separation of the N-terminal FXFG repeats from the RNA-binding domain located in the C-terminus. The breakpoint on chromosome 20q11 occurs within the gene encoding human DNA topoisomerase I (TOP1). As a result, a chimeric mRNA encoding the NUP98 FXFG repeats fused to the body of DNA topoisomerase I is produced. These results indicate that NUP98 is a recurrent target in therapy-related malignancies, and that TOP1 is a previously unrecognized target for chromosomal translocations.
منابع مشابه
Leukaemia Section Short Communication
The breakpoint on chromosome 20 is not constant; 20qis frequently associated with other cytogenetic abnormalities as del(5q), trisomy 8, trisomy 21, deletions or translocations involving the long arm of chromosome 13; a newly described translocation t(11;20)(p15;q11) resulting in a NUP98TOP1 fusion gene was described in therapy-related myelodysplastic syndrome (RAEB); t(11;20)(p15;q11) is a rar...
متن کاملSingle-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15).
It has been demonstrated that the chromosomal translocation t(7;11)(p15;p15) in patients with human acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) invariably involves fusion of the nucleoporin gene, NUP98, on chromosome 11 and the class 1 HOX gene, HOXA9, on chromosome 7, and that the fusion gene NUP98-HOXA9 is an important gene in myeloid leukemogenesis. Here are repor...
متن کاملNUP98-topoisomerase I acute myeloid leukemia-associated fusion gene has potent leukemogenic activities independent of an engineered catalytic site mutation.
Chromosomal rearrangements of the 11p15 locus have been identified in hematopoietic malignancies, resulting in translocations involving the N-terminal portion of the nucleoporin gene NUP98. Fifteen different fusion partner genes have been identified for NUP98, and more than one half of these are homeobox transcription factors. By contrast, the NUP98 fusion partner in t(11;20) is Topoisomerase I...
متن کاملNUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia.
A novel chromosomal translocation, t(2;11)(q31;p15), was identified in a patient with therapy-related acute myelogenous leukemia (t-AML). Fluorescence in situ hybridization experiments mapped the breakpoint near NUP98; Southern blot analysis demonstrated that the nucleoporin gene NUP98 was disrupted by this translocation. We used rapid amplification of cDNA ends to identify a chimeric mRNA. An ...
متن کاملThe inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10.
The inv(11)(p15q22) is a recurrent chromosomal abnormality associated with de novo and therapy-related myeloid malignancies. Here we report the molecular definition of this chromosomal aberration in four patients. Positional cloning showed the consistent rearrangement of the DDX10 gene on chromosome 11q22, which encodes a putative RNA helicase. The translocation targets the NUP98 gene on 11p15,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 94 9 شماره
صفحات -
تاریخ انتشار 1999